OpenNMS Developer Guide

OpenNMS internals

2001

Copyright © 2004-2012 Christy Marshall

1= == R i
B 7= o (= S SR PPRRPT 1
1.1 What iS OPENNMS? ...ttt e et e e e nba e e e anaeee s 1

1.2. Why OPENNMS?ottt e et a e e et e e e e s e e e e ansaeeeeaanseeeeeannseeeeans 1

G o= T = PP PPPPPPPP 1

1.4. Why Develop for OPenNNIMS? ..ot 1

A O 0= | = OO OUP PP PPPPRN 2
2.0, JAVA 2 e ettt e e e et e e bt e e e nnae e e e 2

2.2, XIMLIXSL ettt ettt e e et e et e e e e e e e e e e ananeeeaas 2

B TS = V[£ SRR 2

B S o PSSP 2

2.5. RDBIMS ...ttt ettt e e et — e e e ettt e e e a bt e e e e anrrteeeanaaes 2

pZ S TN V1 RSP 2

P R O (o TP PRTTP TSRO 2

2.8. JOBSNIMP ... e e nrees 2

P20 {1 o RSP 2

G T O 7= = e U 3
3L DISCOVEIY ...ttt ettt ettt e et e e e st e e et e e e e e e e e as 3

T ©F 1 = I SO STRRR 3

O I Y= 11 (o PRSPPI 3
o o] o PSR PPRR 3

G 1T 1 1 o PR 3

3.6, SCREUUIEY ...ttt e e e e e e et e e e e st e e e asneeeeeenneeeeeeansneneeans 3

3.7. Service Monitor (POIEIS)eeiiiiiie et 3

3R T 1 PSPPSR 3

IS IO 1= 1= =0 = [3
(OB = W O | 1= o o o [RS TPRR 3
50 B = oo oo [PPSR 3
3.11.3.11.1. Performance REPOIScooiiiuiiiiieiiee et 4
3.11.3.11.2. Availability REPOITSccoiiiiiiieiiiee e 4

312 WED UL ottt e e e e e e e e e annes 4

O 4= o= A OO PP PO PPPPP PRI 5
4.1. Customizing SNMP Data COllECHIONvvvieiieiiiiiiiiecce e 5

4.2. Adding SUPPOrt FOr NEW SEIVICESuvieiieei et a e e aneees 5
A.2.4.2.1. INEFOQUCTION ...ttt e e e et e e e e e e e s e eeeeaeeeeens 5

4.2.4.2.2. Creating a Capabilities Daemon (Capsd) Pluginccoociiiiiiiiieeiiieeees 5

4.2.4.2.3. Creating a Poller PIUGINcoviiiiiiiiieee e 6

4.3 WED U DESIGN ..eiiiiiiiiie ittt ettt e et e e e st e e e s bt e e e e snnb e e e e e nntneeeeane 9
4.3.4.3.1. Concepts YOoU WIill NEEd:cooiiiiieieeiee e 9

4.3.4.3.2. Overall ArChItECIUIEccveiiie et 9

4.3.4.3.3. Servlet Forwards and Includes versus HTTP Redirectsccooecvveeeene... 10

4.3.4.3.4. Internal URLs versus External URLScccccciviieiiiiieeeee e 10

4.3.4.3.5. Security Roles and Protected URLScovveiiiiiieeiiieee i 10

4.3.4.3.6. Internal Structure of @ JSPoeeeiiiiiiiiiieie e 11

4.3.4.3.7. Internal Structure Of @ SEIVIELcevvieiiiiiiie e 11

4.3.4.3.8. LOGAT LOGUING ..uuvvrrriiieieeeiiiiiitieeeee e e e s ssitrteeeeeeesssssntsaeeeseeeessssnssneneeaeessans 12

4.3.4.3.9. Performance RepOrting SYStEMuuuuuiuimimiuiiiiiiininininnennnnnnnnnnenrnnnn. 12

Preface

OpenNMS is the creation of numerous people and organizations, operating under the umbrella of the
OpenNMS project. The original code base was developed and published under the GPL by the Oculan
Corporation until 2002, when the project administration was passed on to Tarus Balog.

The current corporate sponsor of OpenNM S is The OpenNM S Group, which also ownsthe OpenNM S
trademark.

OpenNMS is a derivative work, containing both original code, included code and modified code that
was published under the GNU General Public License. Please see the source for detailed copyright
notices, but some notable copyright owners are listed below:

e Copyright © 2002-2014 The OpenNMS Group, Inc.

 Original code base for OpenNM S version 1.0.0 Copyright © 1999-2001 Oculan Corporation.

» Mapping code Copyright © 2003 Networked Knowledge Systems, Inc.

* ScriptD code Copyright © 2003 Tavve Software Company .

Please send any omissions or corrections to this document to Tarus Balog.

http://www.opennms.com/
http://www.opennms.com
http://www.oculan.com
http://www.nksi.com
http://www.tavve.com
mailto:tarus@opennms.org

Chapter 1. Chapter 1

Introduction to OpenNMS

1.1. What is OpenNMS?

<insert text>

1.2. Why OpenNMS?

<insert text>

1.3. Features

<insert text>

1.4. Why Develop for OpenNMS?

<insert text>

Chapter 2. Chapter 2

Technologies

2.1. Java 2

<insert text>

2.2. XML/XSL

<insert text>

2.3. Servlets

<insert text>

2.4. JSPs

<insert text>

2.5. RDBMS

<insert text>

2.6. IMS

<insert text>

2.7. Castor

<insert text>

2.8. JoeSNMP

<insert text>

2.9. RRDTool

<insert text>

Chapter 3. Chapter 3

Functional Product Description

3.1. Discovery

<insert text>

3.2. CAPSD

<insert text>
3.3. Eventd

<insert text>

3.4. actiond

<insert text>

3.5. notifd

<insert text>

3.6. Scheduler

<insert text>

3.7. Service Monitor (pollers)

<insert text>

3.8. RTC

<insert text>

3.9. Outage Manager

<insert text>

3.10. Data Collection

<insert text>

3.11. Reporting

<insert text>

Chapter 3

3.11.3.11.1. Performance Reports

<insert text>

3.11.3.11.2. Availability Reports

<insert text>

3.12. Web UI

<insert text>

Chapter 4. Chapter 4
Extending OpenNMS

4.1. Customizing SNMP Data Collection

<insert text>

4.2. Adding Support for New Services

4.2.4.2.1. Introduction

The capabilities daemon (capsd) isresponsible for scanning network interfaces found by the discovery
daemon for the services/protocol s they support and updating the database accordingly. Capsd will also
periodically rescan managed interfaces to determine if a managed interface has had any additional
services enabled since the last capability check.

The poller daemon is responsible for checking the status of each service on each managed interface at
aregularly configured interval. If the status of the service has changed since thelast poll an appropriate
event is generated indicating the new status of the service on that interface.

OpenNMS provides a straight forward framework for extending the default set of services and
protocols it can detecte and monitor. In order to extend OpenNMS to manage a custom service or
protocol the following is required:

* Code a Capsd plugin capabl e of testing whether or
not a network interface supports the desired protocol or service.
* Add a <protocol plugin> elenent defining the new service to the
$BB_HOME/ et ¢/ capsd- configuration.xm config file.
* Code a Poller plugin capable of nmonitoring the current status
of the desired protocol or service on a specified network interface.
* Add <service> and <nonitor> el ements defining the new service
to be polled to the $BB_HOVE/ et c/ pol | er-configuration.xm config
file.

- $BB_HOME refers to the QpenNMVS install directory.

4.2.4.2.2. Creating a Capabilities Daemon (Capsd) Plugin
Writing the Plugin

Capsd uses plugins to perform capability checks on a device. A plugin is simply a Java class which
implements the org.opennms.netmgt.capsd.Plugin interface. The following methods are defined in the
interface and must be implemented:

public String getProtocol Nane()

Sinply returns the nane of the service or protocol tested for by the
plugin. In the case of the FTP plugin the string "FTP" is returned.

public bool ean i sProtocol Supported(java.nnet. | net Address address)

Returns true if the device identified by the InetAddress paraneter
supports the protocol being tested.

public bool ean isProtocol Supported(java. net.|net Address address,
java.util.Mp properties)

Returns true if the device identified by the InetAddress paraneter
supports the protocol being tested. A second paraneter, properties,
is of type java.util.Mp and provides a mechani smfor overriding
default configuration options such as timeouts, retries and port
information.

NOTE: For an exampleplugintakealook at the FTP pluginin src/services/org/opennms/netmgt/capsd/
FtpPlugin.java.

Chapter 4

At runtime the capabilities daemon calls the isProtocol Supported() method of each loaded plugin
passing it the java.net.InetAddress object of each interface found by the discovery daemon. Any
services found to be supported on the interface will cause an entry to be added to the 'ifservices' table
keyed by the interface's node identifier and | P address.

Plugin Integration

During initialization, the capabilities daemon reads the capsd-configuration.xml config file and inserts
any new servicesinto the 'services tablein the database. Further, during initialization, the capabilitiees
daemon uses the plugin class name information defined in capsd-configuration.xml to load each of
the plugins.

To add a new service edit capsd-configuration.xml and add a new <protocol plugin> element. Within
the <protocol plugin> element is defined the service name, plugin class name, and any plugin specific
properties.

Consider the following capsd-configuration.xml entry for the FTP service:

<protocol -plugi n protocol ="FTP" cl ass-name="or g. opennns. net ngt . capsd. Ft pPl ugi n" scan="on">
<property key="userid" value="ftp"/>
<property key="password" val ue="anonynmus@/>

</ protocol - pl ugi n>

The "userid,ftp" and "password,anonymous@" name-value pairs are passed to the plugin via the
java.util.Map parameter of the isProtocol Supported() method described earlier.

4.2.4.2.3. Creating a Poller Plugin
Wkiting the Poller Plugin

The poller daemon uses poller plugins for polling managed interfaces for the current status of
the services supported by the interface. A poller plugin is a Java class which implements the
org.opennms.netmgt.poller.monitors.ServiceMonitor interface. The interface defines the following
methods which must be implemented in the plugin:

public void initialize(java.util.Mp paraneters);

Cal l ed by the poller daenon follow ng instantiation of the

plugin during startup. |If during initialization the plugin detects
a critical error (such as a missing library) it can throw a
java.lang. Runti nException. |If the plugin throws an exception during

initialization the poller daenon will disable the plugin.
public void release();

Call ed by the poller daenon during shutdown. This provides a
nmechani smfor the plugin to rel ease any acquired resources.

public void initialize(org.opennns. netngt.poller.nmonitors. Networklnterface iface);

Cal l ed by the poller daenon whenever the poller |earns of a new
interface which supports the service polled by the plugin.

I'f desired, configuration information can be associated with the
interface at this tine prior the poller actually scheduling

the interface. If the plugin throws an exception during interface
initialization the poller daenon will log an error and discard
the interface.

public void rel ease(java. net. Networklnterface iface);

Cal l ed by the poller daenon whenever an interface is being renmoved
fromthe schedul er. For exanple, if a service is deternined as being
no |onger supported by an interface then this method will be invoked
to cleanup any information associated with that interface. This
gives the inplenmentor of the interface the ability to serialize any

data prior to the interface being discarded. |f an exception is
thrown during the rel ease the exception will be |ogged, but the
interface will still be discarded for garbage collection.

public int poll(java.net.Networklnterface iface,
org. opennms. netngt . utils. Event Proxy eproxy,
java.util.Mp paraneters);

Cal l ed by the poller daenon each tine an interface requires a check
to be performed as defined by the poller scheduler. The poll()
nmethod is passed the interface to check, a reference to an

Chapter 4

required by the plugin aside fromthe standard avail abl e/ unavail abl e
generated by the poller daenon. Additionally, a java.util.Mp

is passed which may be used to access any service specific
configuration values as defined in the poller-configuration.xm
config file.

Poller Plugin Integration

During initialization, the poller daemon reads the poller-configuration.xml config file and uses the
plugin class name information defined in <monitor> element blocks to load each of the plugins. The
parameters associated with each service as defined in <service> elements within the configuration file
are also read and used by the poller to determine how often a particular service is to be polled for the
services which fall within the enclosing package.

To add a new service edit poller-configuration.xml and add a new <service> element to the desired
package. Within the <service> element define the service name, how often it should be scheduled
(interval), and alist of any parameters needed by the plugin defined within <parameter> elements.
The configured parameters will be passed to the plugin via the java.util.Map object parameter of the
poll() method. Typicaly such things as the port on which to test the service as well as timeout and
retry information is defined here.

Consider the following poller-configuration.xml <service> entry for the FTP service:

<servi ce name="FTP" interval ="300000">
<paraneter key="timeout" val ue="3000"/>
<paraneter key="port" val ue="21"/>
<paraneter key="userid" value="ftp"/>
<par aneter key="password" val ue="anonynmous@/>
</ service>

Next the class name of the poller plugin must be defined. This is done by adding a new <monitor>
element to the poller-configuration.xml file. Within this element the name of the service and the class
name of the poller plugin are specified.

Consider the following poller-configuration.xml <monitor> entry for the FTP service:

<moni tor service="FTP" cl ass- nane="or g. opennns. net nyt . pol | er. noni tors. Ft pMonitor"/>

Configuration File Factories
Accessing the OpenNM S Database

OpenNMS database configuration information is specified in the $8BB_HOME/etc/opennms-
databasexml file. Defined within this configuration file are the OpenNMS database
name, userid, and password. If database access is a requirement for a poller the class
org.opennms.netmgt.config.DatabaseConnectionFactory may be used to get a database connection.

The DatabaseConnectionFactory class is a singleton class used to load the database configuration
information. The class provides a convenience method for retrieving aconnection to the database. The
following code snippet illustrates how to use the DatabaseConnectionFactory classto |oad the database
config and retrieve a connection.

inmport java.sql.*;
import org.opennms. net ngt . confi g. Dat abaseConfi gFactory;

public void initialize(Networklnterface iface)
{

Il Get connection to the database so we can
Il retrieve information pertaining to the

Chapter 4

Il passed interface
11
try
{
Dat abaseConnecti onFactory.init();
}
catch (Throwabl e e)

{

Il Log error

/1 Throw exception
throw new Runti meException("Dat abase connection factory
initialization failed, reason: " + e.getlocalizedMessage());

}

try
{

java. sql . Connection dbConn = Dat abaseConnecti onFactory. get | nstance(). get Connection();
}

catch (SQLException sql E)
{

Il Log error

/1 Throw exception
throw new Runti meException("Unable to get connection to the database,
reason: " + sql E getLocal i zedMessage());

}

/1 Do stuff with the database connection

Il dose the connection
try
{

dbConn. cl ose() ;
}
catch (SQLException sql E)
{

Il Log the error

NOTE: For additional example code which uses the DatabaseConnectionFactory take a look at the
SNMP paller plugin: src/services/org/opennms/netmgt/poller/SnmpMonitor.java

Accessing SNMP Configuration Information

SNMP configuration information is specified in the $BB_HOM E/etc/snmp-config.xml file. Defined
within this configuration file are read/write community strings, retries, timeout, and SNMP version
information specific to the OpenNM S installation.

If an SNMP-based poller is being written the class org.opennms.netmgt.config. SnmpPeerFactory may
be used retrieve a JoeSNM P org.opennms.protocol s.snmp.SnmpPeer object for a particular interface's
IP address based on the content of the snmp-config.xml file. If a specific entry in snmp-config.xml
cannot be found a default SnmpPeer object will be returned. An SnmpPeer object encapsulates the
SNMP configuration information associated with a particular |P address and is used to construct
an SNMP session (org.opennms.protocols.snmp.SnmpSession) with the remote node. Refer to the
JoeSNM P documentation for further information on SNMP peer objects and sessions.

The SnmpPeerFactory classisasingleton class used to load the SNMP configuration information. The
classprovidesaconvenience method for retrieving an SnmpPeer object for aprovided network address.

Thefollowing code snippet illustrates how to use the SnmpPeerFactory classto load the SNMP config
and retrieve an SnmpPeer object for a specified network address.

inport org. opennns. protocol s. snnp. SnnpPeer ;
i mport org.opennms. protocol s. snnp. SnnpSessi on;
import org.opennms. net ngt . confi g. SnnpPeer Fact ory;

public void initialize(Networklnterface iface)
{

/1 Initialize the SNVWP peer factory and use it
/1 to construct an SNMP peer object for the
Il passed interface.

11

try

{

SnnpPeer Factory.init();

}

Chapter 4

catch (Throwable e)

{

Il Log error

/1 Throw exception
throw new Runti meException("SNWP peer factory
initialization failed, reason: " + e.getlocalizedMessage());

}
SnnpPeer peer = SnnpPeer Factory. get|nstance().getPeer((InetAddress)iface.getAddress());

/1 Use SnnpPeer object to initialize a JoeSNVP SNMP session
11
try
{
SnnpSessi on session = new SnnpSessi on(peer) ;
}
catch (Socket Exception sE)

{
Il Error Handling

}

/1 Use SNWP session to query the renote node's MB
11

/1 dose the session
try
{
session. close();
}
catch (Throwabl e E)

{

Il Log the error

NOTE: For additional example code which uses the SnmpPeerFactory take alook at the SNMP poller
plugin: src/services/org/opennms/netmgt/poller/SnmpM onitor.java

4.3. Web Ul Design

4.3.4.3.1. Concepts You Will Need:

To get themost from thisdocument and the WebUI code, you will need to befamiliar withthefollowing
subjects: Java, Servlet, and JSP programming HTML and XML Servlet 2.3 and JSP 1.2 specifications
Tomcat 4.0 setup and configuration HTTP methods, error codes, and headers

4.3.4.3.2. Overall Architecture

Thebasicideabehind our architectureisto separate thelogic from the presentation asmuch aspossible.
Thisfacilitates rapid feature addition, rapid feature redesign, and long-term maintenance.

To meet this goal, we use three distinct tools, each described in more detail below:
* models. non-visual objects for non-visual work like reading and writing to the database
e JSPs. generateHTML or XML to display to the user based on information retrieved by themodels

e serviets. usethe models to make changes to the system and then use the JSPs to display results
to the user

All logic for database activity and performance data querying are encapsulated in non-visual models.
Models alow reuse of the same code across several different user interface components. There are
many good examples of this throughout the WebUI code. A few are the PerformanceModd, the
Real TimeDataM odel, and the OutageM odel. Each of these models are used by three or more servlets
or JSPs. Models are not allowed to generate visual content; they are for non-visual work only.

To create HTML or XML to display to the user, we use JSPs. They make simple calls to the models
(and thus the database) to retrieve data to plug into their HTML or XML to display to the user. No

Chapter 4

HTML or XML isgenerated outside of aJSP, and aJSPis not allowed to make changes to the database
or other data. They are for display only.

To alow the user to make changesto data or other features, we write servletsthat respondto an HTTP
POST. The servlet codefirst takes the necessary action (in most cases changing the database or sending
an event) and then redirects the request (with the results of the action) to a JSP for HTML generation

and display.

An exception to the rule aboveisif aURL must return an output type other than HTML or XML (like
an image or PDF), then we implement the URL as a servlet. In this context, the servlet acts like a JSP
in the fact that it is purely used for creation of content for display.

4.3.4.3.3. Servlet Forwards and Includes versus HTTP Redirects

Forwards and includes are servlet/JSP mechanisms that allow Tomcat (or any servlet container) to
ferry requests around different servlets and JSPs to generate the correct content before returning it to
the user. Forwards and includes can be nested as deep as necessary, and they do not leave the web
server until the content is fully generated. We often use forwards in servlets that handle only GET
requests, and we often use includesin JSPsto standardize the content. For example, the header.jsp and
footer.jsp are included in each JSP.

HTTP Redirects are actually a two-request process. The web browser makes the first request which
is almost always a POST to a servlet. Then the servliet does something (like writes to a database or
sends an event) and then sends a redirect response (HT TP response code 301 or 307) back to the web
browser with a new URL. The second request is then made by the web browser to the URL in the
redirect response. This second request is usually a GET request to a JSP. The first request does the
work, and the second request displays the results.

Redirects are useful after using a POST, because if the user uses the back button or the refresh button,
they will not get a cryptic error from the web browser because it does not want to (or cannot) resend
the POST. This creates a much more seamless user experience, and is easier to code. The logic isin
the servlet -- pure Java code, and the output isin the JSP -- almost pure HTML.

4.3.4.3.4. Internal URLs versus External URLs

Internal URLSs are used in forwards and includes by Tomcat. They are relative to the webapp context
URL. Inour case, they are relative to the /opennms URL. These URL s contain leading slashes. If they
do not, they are considered to be a sibling of the current URL and will not work.

External URLs are used as links to other pages by the web browser. They are made relative to our
URL base (see the org.opennms.web.Util.cal culateBaseUrl method). These URLs do not use leading
slashes. If they do, they are considered relative to the root URL and will not work.

Y ou must follow the convention of setting up the HTML BASE taginthe HTML header on every page
or the external URLs will not work. This at the very least will cause problems with loading images
from included JSPs, and your page's header will display incorrectly. At worst, however, many or al
of your HTML links will not work either.

4.3.4.3.5. Security Roles and Protected URLs

In the OpenNM S system, we use the BASIC HT TP authentication mechanism, and there are two major
security roles. The default security roleisthe "OpenNM S User” role, and all users belong to that role.
All URLSs of the OpenNM S WebUI are protected at |east by this default role.

10

Chapter 4

Other security roles are configured in the WEB-INF/web.xml file and the /opt/OpenNM S/etc/magic-
users.properties file. The web.xml file defines which URLs are protected by arole, and the magic-
user.properties file defines which users are authorized in each role.

Another important user roleisthe"OpenNMS Administrator” role. All URLs under /opennms/admin/
* are protected by thisrole. Currently only the special "admin" user is allowed accessto thisrole.

4.3.4.3.6. Internal Structure of a JSP

A good exampleto look at isthe web/web/element/node.jsp. One of the major goalsin our JSP writing
isto keep the Java code as far away as possible from the HTML content, and the format of our JSPs
reflect this.

The JSP @pagedirectiveisfirst. Followed by the declaration for any classvariablesand theinit method
(if required). This declaration section usually defines and initializes the JSP's model which handles
all non-visual code.

The scriptlet for the data-gathering code is next. This section is where al of your Java code that is
not directly related to displaying HTML should go. It usually consists of a short check of the request
parameters and then calling a model method or two. Remember, keeping your Java code in one area
keeps the code portable in case you need to move it into a non-visual object or servlet. It aso helps
you fight the temptation to add logic throughout the body of your JSP. We try to keep our JSPs short
and dumb.

Next is the HTML header. This section defines the page's title, base URL, and includes our global
stylesheet. Please take notice of the HTML BASE tag, the org.opennms.web.Util.cal culateBaseURL
method, and the web/web/includes/styles.css stylesheet.

After the header is the body tag and then an include of our header JSP. This JSP include tag gives
the header.jsp enough information to display itself properly, including the page'stitle, breadcrumbsto
give the user an idea of where they are in the page hierarchy, and links to get back to earlier pages.

The body of our JSPsis atablethat givesit alittle indention on either side. Notice the empty columns
with only non-breaking spaces (& nbsp;). When we completely move over to Cascading Style Sheets
in afuture release, we will use CSSto create indention.

In the body, use the data you collected in the main scriptlet to display here. Try to keep the Java code
in this section to only JSP expressions, if conditionals, and for loops.

After the body is the footer include, which mirrors much of the header include, but without the
breadcrumb information.

Then at the bottom, below the HTML, if you need any convenience methods for display purposes
(creating HTML or URLSs, but not reading the database or any other sort of non-visual logic), then put
a JSP declaration section that creates these convenience methods.

4.3.4.3.7. Internal Structure of a Servlet
A good example servlet is the org.opennms.web.nodel abel.Nodel abel ChangeServlet.

Our servlet structureisactually very similar to Javaportions of our JSPs. The servlet hasamodel class
variable that is initialized in the init method. Then the doGet or doPost method checks the request

11

Chapter 4

parameters, does adatabase |ookup or makes a database change through amodel call, but then it breaks
fromthe JSP structure by calling either aforward or aredirect instead of creating itsown results content.

If the servlet is handling POST methods, it will use a redirect. If the servlet is using a GET method,
it will use aforward.

4.3.4.3.8. Log4J Logging

Inthe WebUI, we use adual servlet-logging and Log4J-logging system. Actually, we arein the process
of moving to aLog4J-based logging scheme, but it islikely that there will always be some amount of
logs going through the servlet logging API into Log4J.

Logging to Log4J through the servlet API isacheived by the use of a Tomcat-specific logger class that
wrappers a Log4J category. Using the serviet API instead of Log4J may be more intuitive to serviet/
JSP programmers who are not familiar with Log4J, but using Log4J gives us many more features.
Log4J gives us control over what level of logging is used; whether a given log message is a debug
message, an informative message, awarning, or an error message; how often the log files should roll;
and how large the log files should grow. Log4J can also send logs to other destinations other than
text files. It can aso add various timestamps and log adornments through configuration files without
changing code.

Currently the web logs end up in one of two log files, but the file count will probably increase as we
adopt Log4J throughout more of the WebUI and create finer-grained Web log categories. Almost all
WebUI logs today end up in the web.log file in the OpenNMS log directory (historically one of /var/
log/opennms or /opt/OpenNM S/log). The only exceptions are authenti cation logs messages which end
up in the webauth.log file.

4.3.4.3.9. Performance Reporting System

The SNMP polling system gathersinformation and storesit in round-robin databases (RRD files) which
are named in a convention that uniquely identifies the interface from which the data was collected.
The WebUI then queries the RRD file directory to see which interfaces have data collected, and then
presents that list to the user. The user selects an interface from the list, and the corresponding RRD is
queried to find out what information was collected. Different types of network devicesyield different
types of performance data, so our reporting system is designed to be flexible. From the list of data
collected, alist of prefabricated reportsis created and presented to the user.

Theuser then, having selected an RRD, aprefabricated report, and adate range, requeststhereport. The
WebUI sendsthereport parameters to the RRDGraphServlet which executes acommand-line program
called rrdtool (see http://www.rrdtool .org). The rrdtool reads the RRD information and creates agraph
inaPNG image. That image is sent back to the user to view.

Theprefabricated reportsare actually just command-line optionsto giveto therrdtool to create agraph.
They are read from the rrdtool -graph.properties file in the /opt/OpenNM S/etc directory.

The user is aso able to create a "custom™ or "ad hoc" performance report by picking and choosing
the data sources inside the RRD to query. The user works through awizard that alows him to choose
and name each data source, give the graph aname, and even choose in which colors each data source
should graph. This uses some templates from the rrdtool-graph.properties file, but all the values are
filled in the template from the users choices. Then the same RRDGraphServlet serves up the resulting
PNG graph image.

12

